Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 16(11): e0253108, 2021.
Article in English | MEDLINE | ID: covidwho-1496434

ABSTRACT

OBJECTIVE: To describe the work environment and COVID-19 mitigation measures for homeless shelter workers and assess occupational risk factors for COVID-19. METHODS: Between June 9-August 10, 2020, we conducted a self-administered survey among homeless shelter workers in Washington, Massachusetts, Utah, Maryland, and Georgia. We calculated frequencies for work environment, personal protective equipment use, and SARS-CoV-2 testing history. We used generalized linear models to produce unadjusted prevalence ratios (PR) to assess risk factors for SARS-CoV-2 infection. RESULTS: Of the 106 respondents, 43.4% reported frequent close contact with clients; 75% were worried about work-related SARS-CoV-2 infections; 15% reported testing positive. Close contact with clients was associated with testing positive for SARS-CoV-2 (PR 3.97, 95%CI 1.06, 14.93). CONCLUSIONS: Homeless shelter workers may be at risk of being exposed to individuals with COVID-19 during the course of their work. Frequent close contact with clients was associated with SARS-CoV-2 infection. Protecting these critical essential workers by implementing mitigation measures and prioritizing for COVID-19 vaccination is imperative during the pandemic.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , SARS-CoV-2/pathogenicity , Adult , Aged , Cell Movement/physiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Occupational Exposure/adverse effects , Risk Factors , SARS-CoV-2/immunology , Young Adult
2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-917002

ABSTRACT

Pro-inflammatory cytokines like interleukin-1ß (IL-1ß) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1ß on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1ß and used Atomic Force Microscopy to unveil that IL-1ß significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1ß stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1ß may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1ß-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1ß provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.


Subject(s)
Interleukin-1beta/physiology , Lung/physiology , Actins/metabolism , Adolescent , Adult , Biomechanical Phenomena , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Cyclooxygenase 2/metabolism , Elasticity/drug effects , Elasticity/physiology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Interleukin-1beta/pharmacology , Lung/cytology , Lung/drug effects , Male , Microscopy, Atomic Force , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics , Regeneration/physiology , Wound Healing/drug effects , Wound Healing/genetics , Wound Healing/physiology , Young Adult
3.
J Mol Biol ; 433(11): 166705, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-917347

ABSTRACT

Most cells in multicellular organisms are somehow asymmetric, polarized: maintaining separate membrane domains. Typical examples are the epithelial cells (apical-basal polarization), neurons (dendritic-axonal domains), or migratory cells (with a leading and a trailing edge). Here we present the most comprehensive database containing experimentally verified mammalian proteins that display polarized sorting or secretion, focusing on epithelial polarity. In addition to the source cells or tissues, homology-based inferences and transmembrane topology (if applicable) are all provided. PolarProtDb also offers a detailed interface displaying all information that may be relevant for trafficking: including post-translational modifications (glycosylations and phosphorylations), known or predicted short linear motifs conserved across orthologs, as well as potential interaction partners. Data on polarized sorting has so far been scattered across myriads of publications, hence difficult to access. This information can help researchers in several areas, such as scanning for potential entry points of viral agents like COVID-19. PolarProtDb shall be a useful resource to design future experiments as well as for comparative analyses. The database is available at http://polarprotdb.enzim.hu.


Subject(s)
Databases, Factual , Epithelial Cells/cytology , Epithelial Cells/metabolism , Membrane Proteins/metabolism , COVID-19/metabolism , COVID-19/virology , Cell Movement/physiology , Cell Polarity/physiology , Genes , Glycosylation , Host Microbial Interactions , Humans , Phosphorylation , Protein Interaction Maps , Protein Transport , Proteome , SARS-CoV-2/metabolism
4.
Pain ; 162(1): 243-252, 2021 01.
Article in English | MEDLINE | ID: covidwho-811188

ABSTRACT

Global spread of severe acute respiratory syndrome coronavirus 2 continues unabated. Binding of severe acute respiratory syndrome coronavirus 2's spike protein to host angiotensin-converting enzyme 2 triggers viral entry, but other proteins may participate, including the neuropilin-1 receptor (NRP-1). Because both spike protein and vascular endothelial growth factor-A (VEGF-A)-a pronociceptive and angiogenic factor, bind NRP-1, we tested whether spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuron firing was blocked by spike protein and NRP-1 inhibitor EG00229. Pronociceptive behaviors of VEGF-A were similarly blocked through suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A "silencing" of pain through subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.


Subject(s)
SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cell Movement/physiology , Humans , Neuropilin-1/metabolism , Pain Measurement , SARS-CoV-2/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL